MATEMÁTICA E ARQUITETURA: PARABOLOIDES MODELADOS PELA TÉCNICA SLICEFORM

Autores

  • Thiago Torres da Silva Instituto Federal de São Paulo

DOI:

https://doi.org/10.63026/acertte.v5i2.221

Palavras-chave:

Matemática. Arquitetura. Paraboloide elíptico. Paraboloide hiperbólico. Sliceform.

Resumo

A Matemática está presente em diversas áreas do conhecimento, sendo uma delas as Artes. Pinturas, esculturas e obras arquitetônicas trazem aspectos que se relacionam diretamente com a Matemática, em particular com a Geometria. O objetivo geral deste trabalho é estudar o paraboloide elíptico e o paraboloide hiperbólico e suas modelagens via Sliceform no contexto da relação entre Matemática e Arquitetura. Essa pesquisa, com abordagem qualitativa, em termos metodológicos classifica-se como exploratória. Neste sentido, fez-se um levantamento e estudo de literatura relacionada aos conceitos fundamentais dos paraboloides, da relação Matemática e Arquitetura e da técnica Sliceform. A etapa seguinte envolveu o desenvolvimento dos modelos, que consistiu na implementação prática da técnica Sliceform para construir os modelos tridimensionais das superfícies. A construção dos paraboloides via Sliceform levou a uma compreensão mais aprofundada da espacialidade e das seções transversais dessas superfícies, estimulando a criatividade do autor deste trabalho e um interesse ainda maior pelas superfícies matemáticas. Os modelos construídos mostraram potencialidades para serem utilizados em aulas de Matemática.

Downloads

Não há dados estatísticos.

Biografia Autor

Thiago Torres da Silva, Instituto Federal de São Paulo

Licenciado em Matemática pelo Instituto Federal de Educação, Ciência e Tecnologia de São Paulo - Campus São Paulo.

Referências

ALDA, F. Metropol Parasol, Seville. 2011. Disponível em: < https://arquitecturaviva.com/works/metropol-parasol-7>. Acesso em: 01 de ago. de 2024.

ARCHELLO. 2024. Disponível em: <https://archello.com/project/guanglian-icc-cloud-center>. Acesso em: 01 de ago. de 2024.

ARCHELLO. Guanglian icc cloud center. 2024. Disponível em: <https://archello.com/project/guanglian-icc-cloud-center>. Acesso em: 01 de ago. de 2024.

BARDOS, L. C. How to make a model of a hyperbolic paraboloid out of paper. 2024. Disponível em: <https://www.cutoutfoldup.com/972-hyperbolic-paraboloid-from-parabolic-cross-sections.php>. Acesso em: 04 de jun. de 2024.

BATISTA, C. et al. A Matemática na Arquitetura. Abordando a Matemática, 2015. Disponível em: https://abordandoamatematica.wordpress.com/2015/09/14/173/. Acesso em: 03 de maio de 2024.

BAUMKART, T. A.; ATKINSON, L. G. D. M.; NEIS, K. A influência da matemática na história da arquitetura e sua relação com a atualidade. Salão do Conhecimento, [S. l.], v. 5, n. 5, 2019. Disponível em: <https://publicacoeseventos.unijui.edu.br/index.php/salaoconhecimento/article/view/11951>. Acesso em: 29 de abr. de 2024.

BRUSANTIN, A. V. História da Matemática Relacionada à Arquitetura. SCRIBD, [S. l.], p. 1-16, 9 de mar. 2011. Disponível em: <https://pt.scribd.com/doc/54974950/Historia-da-Matematica-Relacionada-a-Arquitetura>. Acesso em: 29 de abr. de 2024.

CAMARGO, I; BOULOS, P. Geometria Analítica: um tratamento vetorial. 3. ed. rev. e ampl. São Paulo: Pearson Education do Brasil, 2005.

CASCALLANA, M. T. Iniciación a la matemática. Materiales y recursos didácticos. Madrid: Santillana, 1988.

CUNDY, H. M.; ROLLETT, A. P. Mathematical Models. 2nd ed. Oxford: Clarendon Press, 1961.

DUQUE, K. Clássicos da Arquitetura: Restaurante Los Manantiales / Félix Candela, 2017. Disponível em: < https://www.archdaily.com.br/br/869307/classicos-da-arquitetura-restaurante-los-manantiales-felix-candela>. Acesso em: 08 mai. 2022.

FERNANDES, M. Concurso Senado: Orçamento 2022 prevê vagas para a Casa. Disponível em: <https://blogs.correiobraziliense.com.br/papodeconcurseiro/concurso-senado-orcamento-2022-preve-vagas-para-a-casa/>. Acesso em: 15 de maio de 2024.

GIANNOTTI, A. Clássicos da Arquitetura: Catedral de Santa Maria / Kenzo Tange, 2011. Disponível em: <https://www.archdaily.com/114435/ad-classics-st-mary-cathedral-kenzo-tange>. Acesso em: 08 de maio de 2022.

GIL, A. C. Métodos e técnicas de pesquisa social. 6. ed. São Paulo: Atlas, 2008.

GÓMEZ, J. J. D.; FRENSEL, K. R.; SANTO, N. E. Geometria Analítica II. 3. ed. Rio de Janeiro: Fundação CECIERJ, 2009.

GONÇALVES, V. S. Curvas, Superfícies e Arquitetura. 2017. Disponível em: <https://curvasearquitetura.wordpress.com/paraboloide-hiperbolico/>. Acesso em: 08 mai. 2022.

GRIZOTTO, C.; ANDRADE, L.; L’Oceanografic: conheça o aquário gigante em Valência, 2020. Disponível em: <https://turismo.eurodicas.com.br/l-oceanografic/>. Acesso em: 08 de mai. de 2022.

GUIDORIZZI, H. L. Um curso de cálculo volume 2. 5. ed. São Paulo: LTC, 2011.

HARNASZ, C. Sliceform at Tonbridge School. 2011. Disponível em: < https://www.flickr.com/photos/7265584@N04/6239870497/in/photostream/>. Acesso em: 01 de ago. de 2024.

HARTMANN, A. L. B.; MALTEMPI, M. V. Matemática, arte e história: um foco nos dez livros de arquitetura de Vitruvius. Revista História da Matemática para Professores, v. 8, n. 2, p. 1-9, 2022.

KILHIAN, K. Matemática, Engenharia e Arte: Texto paradidático de Cálculo Integral para cursos de engenharia. 2019. Disponível em: <https://www.obaricentrodamente.com/2019/09/matematica-engenharia-e-arte.html>. Acesso em: 15 de maio de 2024.

LAURIOLA, D. Combining efficiency and aesthetics through the integration of structural topology optimization in architecture. 2017. Disponível em: <https://repositorio.upct.es/entities/publication/0e473b96-01c9-4594-9a82-653366302755>. Acesso: 15 de maio de 2024.

LIMA, A. A regra áurea na arquitetura. 2018. Disponível em: <https://projetobatente.com.br/regra-aurea-na-arquitetura/>. Acesso em: 03 de maio de 2024.

LOPES, M. A Mitologia e a Verdade da Razão de Ouro. 2014. Disponível em: <https://www.astropt.org/2014/08/20/a-mitologia-e-a-verdade-da-razao-de-ouro/>. Acesso em: 03 de maio de 2024.

LUECKING, S. Creating Sliceforms with 3D Modelers. School of Computer Science, Telecommunications and Information Systems, DePaul University, Chicago, 2006. Disponível em: <https://archive.bridgesmathart.org/2006/bridges2006-631.pdf> Acesso em 20 de out. de 2023.

MARQUES, J. C. Relações entre proporção, arquitetura e matemática: abordagens em desenho técnico. GRAPHICA 2017 - XII International Conference on Graphics Engineering for Arts and Design. Araçatuba, 2017.

MARTINS, W. V. Curvas de nível: um recurso gráfico utilizando o software geogebra. 2020.

MATOS, D. T.; FERNANDES, T. de S. As cúpulas do palácio do congresso nacional. Caderno de Graduação - Ciências Exatas e Tecnológicas - UNIT - SERGIPE, [S. l.], v. 5, n. 2, p. 91, 2019. Disponível em: https://periodicos.set.edu.br/cadernoexatas/article/view/6687. Acesso em: 15 de maio de 2024.

MEIRELLES, C. R. M.; KISHI, S. Grandes Coberturas na Arquitetura Contemporânea: Estudos de Caso do Sony Center e do Mercado de Santa Caterina. Cadernos de pós-graduação em arquitetura e urbanismo, v. 13, n. 2, p. 19-19, 2013.

MONERA, M. G. SliceformsProject. 2024. Disponível em: <https://www.sliceformsproject.com/>. Acesso em: 04 de jun. 2024.

MONERA, M. G. Superficies Seccionadas. XIII JORNADES D‘EDUCACIÓ MATEMÀTICA DE LA COMUNITAT VALENCIANA: INNOVACIÓ I TECNOLOGIA EN EDUCACIÓ MATEMÀTICA, Alicante, 2018. Disponível em: https://rua.ua.es/dspace/bitstream/10045/98657/1/LLIBRE_JORNADES_MATEMATIQUES_08.pdf. Acesso em: 25 de ago. de 2023.

MONERA, M. G. Taller de matemáticas: Superficies en 3D. Redes de Investigación e Innovación en Docencia Universitaria, Alicante, 2020. Disponível em: http://rua.ua.es/dspace/handle/10045/109964. Acesso em: 25 de ago. 2023.

SANTANA, J. J. FUNATO, R. L.; Sliceforms: uma técnica interessante para construção de gráficos de funções de duas variáveis. In: Anais do GEEM - Vitória da Conquista, Bahia, 2014. Disponível em: https://proceedings.science/geem/geem-2014/papers/sliceforms--uma-tecnica-interessante-para-construcao-de-graficos-de-funcoes-de-duas-variaveis. Acesso em: 25 de ago. de 2023.

SANTOS, R. S. dos et al. Matemática e arquitetura: uso de fractais em mobiliário urbano. Scientia Plena, v. 14, n. 9, 2018. DOI: https://doi.org/10.14808/sci.plena.2018.095901

SHARP, J. Sliceforms, surfaces and a serendipitous discovery. Symmetry: art and science, Bélgica, v. 2, 2002. Disponível em: https://www.yumpu.com/en/document/view/12301640/symmetryart-and-science-sint-lucas. Acesso em: 20 de out. de 2023.

SHARP, J. Sliceforms: Mathematical Models from Paper. Editora Tarquin Publications, 1995.

SHARP, J. Surfaces: explorations with Sliceforms. Editora Tarquin Publications, 2004.

SILVA, E. G. da. Os palácios originais de Brasília. 2012. 597p. Tese (Doutorado em Arquitetura e Urbanismo) – Faculdade de Arquitetura e Urbanismo, Universidade de Brasília, 2012.

SILVA, E. M. C. F. A aplicação da matemática na composição arquitetônica. 2022.

STEWART, J. Cálculo volume 2. 8. ed. São Paulo: Cengage Learning, 2016.

THOMAS, G. B. WEIR, M. D.; HASS J.; GIORDIANO, F. R.; Cálculo volume 2. Editora Pearson Education do Brasil, 2012.

VALENCIA TRAVEL. Oceanogràfic (Valencia) El Acuario marino más grande de Europa. Disponível em: <https://infovalenciatravel.com/oceanografic-valencia/>. Acesso em: 08 de maio de 2024.

VASCONCELOS, E. V. et al. Sólidos e Superfícies: Construção de modelos concretos. Salvador: EDUFBA, 2010.

WATSON, T. Sliceforms: Deployable Structures from Interlocking Slices. Apollo - University of Cambridge Repository, 2021.

Publicado

2025-02-22

Como Citar

Silva, T. T. da. (2025). MATEMÁTICA E ARQUITETURA: PARABOLOIDES MODELADOS PELA TÉCNICA SLICEFORM. REVISTA CIENTÍFICA ACERTTE - ISSN 2763-8928, 5(2), e52221. https://doi.org/10.63026/acertte.v5i2.221

Edição

Secção

Trabalho de Conclusão de Curso - TCC

Categorias