INFLUÊNCIA DOS FENÔMENOS CLIMÁTICOS DO EL NIÑO E DA LA NIÑA NA PREVISÃO DA MÉDIA DIÁRIA DE IRRADIAÇÃO GLOBAL NA CIDADE DE FORTALEZA

Autores

DOI:

https://doi.org/10.47820/acertte.v2i2.53

Palavras-chave:

fenômenos, clima, Fortaleza

Resumo

Neste trabalho, previsões da média diária de irradiação solar global foram obtidas pela aplicação de algoritmos de aprendizagem de máquina em dois conjuntos de dados formados por variáveis exógenas (insolação, temperatura do ar, precipitação, etc), variáveis endógenas (série temporal da média diária de irradiação solar global) e variáveis temporais (ano, mês e dia da medição). A diferença entre os conjuntos de dados está relacionada ao fato de que em um se considera as intensidades dos fenômenos climáticos do El Niño e da La Niña como preditores para os modelos de aprendizagem utilizados, enquanto no outro não se considera. Desta forma, foi possível avaliar se a adição do preditor relacionado ao El Niño/La Niña contribui para uma melhor acurácia de previsão por parte dos modelos aplicados: Máquina de Aprendizagem Mínima, Regressão por Vetor Suporte, Florestas Aleatórias, K-Vizinhos mais Próximos e uma árvore de regressão com o uso de Bootstrap. As métricas de erro Erro Médio Absoluto, Erro de Viés Médio, Raiz do Erro Quadrático Médio, Raiz do Erro Quadrático Médio Relativo e Habilidade de Previsão foram utilizadas para a análise do desempenho dos algoritmos. A média aritmética da Raiz do Erro Quadrático Médio e da Habilidade de Previsão para o caso em que se considerou o El Niño/La Niña como atibutos foram de 40.78 W/m² e 7,87% , respectivamente. Já para o caso em que não se considera tais preditores os valores obtidos foram de 40.86 W/m² e 7.69%. Indicando que o uso destes preditores aumenta a acurácia de previsão dos algoritmos em questão.

Downloads

Não há dados estatísticos.

Biografia do Autor

Felipe PInto Marinho

Mestre em Engenharia Mecânica pela Universidade Federal do Ceará (UFC) com ênfase em Processos, Equipamentos e Sistemas para Energias Renováveis. Têm interesse em Aprendizagem de Máquina (Machine Learning), Otimização Convexa, Processamento de Imagens Digitais, Análise Estatística de Dados e Sistemas para Energias Renováveis. Têm experiência com as linguagens R e Python. Atualmente, é doutorando no Programa de Pós-Graduação em Engenharia de Teleinformática da UFC (PPGETI).

Juliana Silva Brasil

Universidade de São Paulo

Paulo Alexandre Costa Rocha

Universidade Federal do Ceará

Maria Eugênia Vieira da Silva

Universidade Federal do Ceará

Juarez Pompeu de Amorim Neto

Universidade Federal do Ceará

Referências

NOTTON, Gilles et al. Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting. Renewable and Sustainable Energy Reviews, v. 87, p. 96-105, 2018. DOI: https://doi.org/10.1016/j.rser.2018.02.007

QING, Xiangyun; NIU, Yugang. Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM. Energy, v. 148, p. 461-468, 2018. DOI: https://doi.org/10.1016/j.energy.2018.01.177

MEJIA, John F.; GIORDANO, Marco; WILCOX, Eric. Conditional summertime day-ahead solar irradiance forecast. Solar Energy, v. 163, p. 610-622, 2018. DOI: https://doi.org/10.1016/j.solener.2018.01.094

NONNENMACHER, Lukas; KAUR, Amanpreet; COIMBRA, Carlos FM. Day-ahead resource forecasting for concentrated solar power integration. Renewable energy, v. 86, p. 866-876, 2016. DOI: https://doi.org/10.1016/j.renene.2015.08.068

TRAPERO, Juan R.; KOURENTZES, Nikolaos; MARTIN, Alberto. Short-term solar irradiation forecasting based on dynamic harmonic regression. Energy, v. 84, p. 289-295, 2015. DOI: https://doi.org/10.1016/j.energy.2015.02.100

DONG, Zibo et al. Short-term solar irradiance forecasting using exponential smoothing state space model. Energy, v. 55, p. 1104-1113, 2013. DOI: https://doi.org/10.1016/j.energy.2013.04.027

PEDRO, Hugo TC; COIMBRA, Carlos FM. Nearest-neighbor methodology for prediction of intra-hour global horizontal and direct normal irradiances. Renewable energy, v. 80, p. 770-782, 2015. DOI: https://doi.org/10.1016/j.renene.2015.02.061

PEDRO, Hugo TC et al. Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts. Renewable Energy, v. 123, p. 191-203, 2018. DOI: https://doi.org/10.1016/j.renene.2018.02.006

PAWAR, Prathamesh et al. Detecting clear sky images. Solar Energy, v. 183, p. 50-56, 2019. DOI: https://doi.org/10.1016/j.solener.2019.02.069

KOO, Choongwan et al. A novel estimation approach for the solar radiation potential with its complex spatial pattern via machine-learning techniques. Renewable Energy, v. 133, p. 575-592, 2019. DOI: https://doi.org/10.1016/j.renene.2018.10.066

YAGLI, Gokhan Mert; YANG, Dazhi; SRINIVASAN, Dipti. Automatic hourly solar forecasting using machine learning models. Renewable and Sustainable Energy Reviews, v. 105, p. 487-498, 2019. DOI: https://doi.org/10.1016/j.rser.2019.02.006

BENALI, L. et al. Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components. Renewable energy, v. 132, p. 871-884, 2019. DOI: https://doi.org/10.1016/j.renene.2018.08.044

DE SOUZA JÚNIOR, Amauri Holanda et al. Minimal learning machine: a novel supervised distance-based approach for regression and classification. Neurocomputing, v. 164, p. 34-44, 2015. DOI: https://doi.org/10.1016/j.neucom.2014.11.073

CARRASCO, Miguel; LÓPEZ, Julio; MALDONADO, Sebastián. Epsilon-nonparallel support vector regression. Applied Intelligence, p. 1-14.

DRUCKER, Harris et al. Support vector regression machines. In: Advances in neural information processing systems. 1997. p. 155-161.

SHARMA, Navin et al. Predicting solar generation from weather forecasts using machine learning. In: 2011 IEEE international conference on smart grid communications (SmartGridComm). IEEE, 2011. p. 528-533. DOI: https://doi.org/10.1109/SmartGridComm.2011.6102379

WALCH, Alina et al. Spatio-temporal modelling and uncertainty estimation of hourly global solar irradiance using Extreme Learning Machines. Energy Procedia, v. 158, p. 6378-6383, 2019. DOI: https://doi.org/10.1016/j.egypro.2019.01.219

<http://enos.cptec.inpe.br/>. Acesso em 17. jun. 2019.

<https://www.noaa.gov/>. Acesso em 17. jun. 2019.

MOHAMMADI, Kasra; GOUDARZI, Navid. Study of inter-correlations of solar radiation, wind speed and precipitation under the influence of El Niño Southern Oscillation (ENSO) in California. Renewable energy, v. 120, p. 190-200, 2018. DOI: https://doi.org/10.1016/j.renene.2017.12.069

LI, Mao-Fen et al. General models for estimating daily global solar radiation for different solar radiation zones in mainland China. Energy conversion and management, v. 70, p. 139-148, 2013. DOI: https://doi.org/10.1016/j.enconman.2013.03.004

JAMES, Gareth et al. An introduction to statistical learning. New York: springer, 2013. DOI: https://doi.org/10.1007/978-1-4614-7138-7

HYNDMAN, Rob J.; ATHANASOPOULOS, George. Forecasting: principles and practice. OTexts, 2018.

MEHROTRA, Sanjay. On the implementation of a primal-dual interior point method. SIAM Journal on optimization, v. 2, n. 4, p. 575-601, 1992. DOI: https://doi.org/10.1137/0802028

KUHN, Max; JOHNSON, Kjell. Applied predictive modeling. New York: Springer, 2013. DOI: https://doi.org/10.1007/978-1-4614-6849-3

BEN-ISRAEL, Adi; GREVILLE, Thomas NE. Generalized inverses: theory and applications. Springer Science & Business Media, 2003.

PENROSE, Roger. A generalized inverse for matrices. In: Mathematical proceedings of the Cambridge philosophical society. Cambridge University Press, 1955. p. 406-413. DOI: https://doi.org/10.1017/S0305004100030401

NIEWIADOMSKA-SZYNKIEWICZ, Ewa; MARKS, Michał. Optimization schemes for wireless sensor network localization. International Journal of Applied Mathematics and Computer Science, v. 19, n. 2, p. 291-302, 2009. DOI: https://doi.org/10.2478/v10006-009-0025-3

MARQUARDT, Donald W. An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, v. 11, n. 2, p. 431-441, 1963. DOI: https://doi.org/10.1137/0111030

MORÉ, Jorge J. The Levenberg-Marquardt algorithm: implementation and theory. In: Numerical analysis. Springer, Berlin, Heidelberg, 1978. p. 105-116. DOI: https://doi.org/10.1007/BFb0067700

BELLMAN, Robert. Curse of dimensionality. Adaptive control processes: a guided tour. Princeton, NJ, 1961. DOI: https://doi.org/10.1515/9781400874668

WOLD, Svante; ESBENSEN, Kim; GELADI, Paul. Principal component analysis. Chemometrics and intelligent laboratory systems, v. 2, n. 1-3, p. 37-52, 1987. DOI: https://doi.org/10.1016/0169-7439(87)80084-9

Downloads

Publicado

20/02/2022

Como Citar

Marinho, F. P., Silva Brasil, J., Costa Rocha, P. A., Vieira da Silva, M. E., & Pompeu de Amorim Neto, J. (2022). INFLUÊNCIA DOS FENÔMENOS CLIMÁTICOS DO EL NIÑO E DA LA NIÑA NA PREVISÃO DA MÉDIA DIÁRIA DE IRRADIAÇÃO GLOBAL NA CIDADE DE FORTALEZA. REVISTA CIENTÍFICA ACERTTE - ISSN 2763-8928, 2(2), e2253. https://doi.org/10.47820/acertte.v2i2.53