MEASURING ELECTIVE SURGERY WAITING LISTS IN BRAZIL’S UNIFIED HEALTH SYSTEM: ANALYTICAL LIMITS
DOI:
https://doi.org/10.63026/acertte.v5i12.288Keywords:
Surgical waiting list. SUS. Data governance. Interoperability. Artificial intelligence.Abstract
The measurement of elective surgery waiting lists within Brazil’s Unified Health System (SUS) remains, in 2025, a technical, methodological, and institutional challenge widely recognized in the literature and in official documents of the Ministry of Health. Despite the implementation of federal programs aimed at reducing unmet surgical demand, such as the National Waiting List Reduction Program (PNRF) and the More Access to Specialists Program (PMAE), the SUS still lacks an integrated data infrastructure capable of systematically capturing, consolidating, and analyzing information on surgical requests, waiting times, and procedures performed. This article demonstrates that the main information systems currently used to manage elective surgery waiting lists—SISREG, SIH/SUS, e-SUS APS, and DRAC/DATASUS dashboards—suffer from structural fragmentation, inconsistent data entry, and low interoperability, which prevent the construction of reliable and auditable national time series. The absence of unique surgical request identifiers, heterogeneous municipal data reporting practices, and the lack of applied data science and artificial intelligence tools constitute critical bottlenecks in surgical regulation governance. Based on contemporary health data governance frameworks and international experiences, the study proposes a set of structural actions focused on national standardization, systemic integration, the use of machine learning, and data openness through public APIs. It concludes that, without profound reforms in the SUS information architecture, Brazil will remain unable to accurately measure unmet elective surgical demand, undermining evidence-based surgical planning and capacity management.
Downloads
References
AUSTRALIAN INSTITUTE OF HEALTH AND WELFARE. Elective surgery waiting times 2022–23. Canberra: AIHW, 2023.
BRASIL. Ministério da Saúde. Caderno de regulação do acesso no SUS. Brasília: Ministério da Saúde, 2017.
BRASIL. Ministério da Saúde. Estratégia de transformação digital da saúde (2020–2028). Brasília: Ministério da Saúde, 2020.
BRASIL. Ministério da Saúde. Manual técnico do SISREG – Sistema de Regulação. Brasília: Ministério da Saúde, 2014.
BRASIL. Ministério da Saúde. Nota técnica nº 6/2020: recomendações para suspensão de cirurgias eletivas durante a pandemia de COVID-19. Brasília: Ministério da Saúde, 2020.
BRASIL. Ministério da Saúde. Portaria GM/MS nº 1.189, de 5 de setembro de 2023. Institui o Programa Nacional de Redução de Filas – PNRF. Diário Oficial da União: Brasília, 6 set. 2023.
BRASIL. Ministério da Saúde. Programa Mais Acesso a Especialistas – PMAE. Brasília: Ministério da Saúde, 2024.
BRASIL. Ministério da Saúde. SIH/SUS – Sistema de Informações Hospitalares: manual técnico. Brasília: Ministério da Saúde, 2022.
CANADA. Health Canada. Wait times for priority procedures in Canada. Ottawa: Government of Canada, 2022.
CONSELHO NACIONAL DE SECRETÁRIOS DE SAÚDE (CONASS). Pandemia COVID-19: impacto na atenção hospitalar e no acesso a procedimentos eletivos no SUS. Brasília: CONASS, 2021.
COVIDSURG COLLABORATIVE. Elective surgery cancellations due to the COVID-19 pandemic: global predictive modelling. British Journal of Surgery, v. 107, p. 1440–1449, 2020.
DATASUS. Catálogo DRAC: painéis públicos e sistemas de informação. Brasília: Ministério da Saúde, 2024. Disponível em: https://controleavaliacao.saude.gov.br. Acesso em: 17 nov. 2025.
DENMARK HEALTH AUTHORITY. National waiting time registry: annual report 2023. Copenhagen: Danish Health Authority, 2023.
JARRETT, C.; LUKAS, C.; NICHOLSON, D. Artificial intelligence in health service management: opportunities and risks. The Lancet Digital Health, v. 5, n. 2, p. e121–e133, 2023.
NHS ENGLAND. Consultant-led referral to treatment (RTT) waiting times statistics. London: NHS, 2023.
ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT (OECD). Health data governance for the digital age. Paris: OECD Publishing, 2021.
ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT (OECD). Tackling the backlog of elective surgeries after COVID-19. Paris: OECD Health Policy Studies, 2022.
ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT (OECD). Waiting times for health services: next in line. Paris: OECD Health Policy Studies, 2020.
ORGANIZAÇÃO PAN-AMERICANA DA SAÚDE (OPAS). Transformação digital do setor saúde nas Américas. Washington, DC: OPAS, 2023.
ORGANIZAÇÃO PAN-AMERICANA DA SAÚDE (OPAS); BRASIL. Ministério da Saúde. Análise da capacidade regulatória do SUS. Brasília: OPAS/MS, 2022.
RUBIN, N.; DAVIDSON, P.; BOLTON, L. Surgical waiting lists: measurement, management and policy lessons. Journal of Health Services Research & Policy, v. 25, n. 4, 2020.
MACHADO, Telma Silva; DE LIBERAL, Marcia Mello Costa. Gestão da Qualidade em Saúde: serviços de atendimento pré e pós-hospitalar. Revista Científica ACERTTE, v. 4, n. 3, p. e43180-e43180, 2024. DOI: https://doi.org/10.63026/acertte.v4i3.180
TOPOL, E. Deep medicine: how artificial intelligence can make healthcare human again. New York: Basic Books, 2019.
Downloads
Published
How to Cite
License
Copyright (c) 2025 ACERTTE SCIENTIFIC JOURNAL

This work is licensed under a Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista ACERTTE, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a ACERTTE apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.



