LOS MODELOS DE TURBULENCIA APLICARON LA MECÁNICA DE FLUIDOS CLÁSICA Y LOS PROBLEMAS DE TRANSFERENCIA DE CALOR - LA EVALUACIÓN DE RENDIMIENTO DEL PAQUETE OPENFOAM OPENFOAM OPENSOURCE DFC

Autores/as

DOI:

https://doi.org/10.47820/acertte.v1i5.39

Palabras clave:

Los temas relacionados con el modelado de flujos turbulentos

Resumen

Los temas relacionados con el modelado de flujos turbulentos tienen una relevancia significativa en varias áreas, especialmente en ingeniería, ya que la gran mayoría de los flujos presentes en los proyectos de dispositivos y sistemas se caracterizan por ser turbulentos. Una herramienta ampliamente aplicada para el análisis de dichos flujos es el uso de simulaciones numéricas basadas en modelos de turbulencia. Por lo tanto, este trabajo tiene como objetivo evaluar el rendimiento de varios modelos de turbulencia cuando se aplican a la mecánica de fluidos clásica y los problemas de transferencia de calor, ya ampliamente validados por procedimientos empíricos. Se utilizó el software de código abierto OpenFOAM, muy adecuado para obtener soluciones numéricas a problemas de mecánica de fluidos que involucran geometrías complejas. Los problemas de evaluación de los modelos de turbulencia seleccionados fueron: cavidad bidimensional, Pitz-Daily, flujo de aire sobre un aeródromo, flujo de aire sobre el cuerpo romo de Ahmed y el problema de la convección natural entre placas paralelas. La solución a estos problemas se logró utilizando varios modelos de turbulencia de las ecuaciones medias de Reynolds (RANS), a saber: k-ε, k-ω, Lam-Bremhorst k-ε, k-ω SST, Lien-Leschziner k-ε, Spalart-Allmaras, Launder-Sharma k-ε, grupo de renormalización (RNG) k-ε. Los resultados obtenidos fueron comparados con los encontrados en la literatura los cuales fueron obtenidos empíricamente, permitiendo evaluar las fortalezas y debilidades del modelado de turbulencia aplicado en cada problema.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Paulo Rocha, Universidade Federal do Ceará

Universidade Federal do Ceará

Felipe Pinto Marinho, Universidade Federal do Ceará

Engenheiro Mecânico, Mestre em Engenharia Mecânica, Doutorando em Engenharia de Teleinformática.

Victor Oliveira Santos, Universidade Federal do Ceará

Engenheiro Mecânico, Mestrando em Engenharia Mecânica.

Stéphano Praxedes Mendonça, Universidade Federal do Ceará

Engenheiro de Energias Renováveis e Mestre em Engenharia Mecânica pela Universidade Federal do Ceará.

Maria Eugênia Vieira da Silva, Universidade Federal do Ceará

Graduação em Engenharia Mecânica, Mestrado em Engenharia Mecânica, Doutorado em Engenharia Civil e pós-doutorado em Energia Heliotérmica. É Professora Titular da Universidade Federal do Ceará.

Citas

Rocha PAC, Silveira JVP (2012) Estudo e aplicação de simulação computacional em problemas simples de mecânica dos fluidos e transferência de calor. Revista Brasileira de ensino de Física 34(3):4306. https://doi.org/ DOI: https://doi.org/10.1590/S1806-11172012000400006

1590/S1806-11172012000400006

Wehmman CF, Rocha PAC, da Silva MEV, Araújo FAA, Correia DL (2017) Estudo e aplicação de simulação computacional em problemas simples de mecânica dos fluidos e transferência de calor – Parte II: Problemas clássicos de transmissão de calor, Revista Brasileira de Ensino de Física 40(2): 2313. http://dx.doi.org/10.1590/1806-9126-rbef-2017-0221 DOI: https://doi.org/10.1590/1806-9126-rbef-2017-0221

Versteeg HK, Malalasekera W (2007) An Introduction to Computational Fluid Dynamics – The Finite Volume Method. Pearson, London.

Kurokawa FA, Corrêa L, de Queiroz RAB (2018) Numerical simulation of 3D unsteady turbulent free surface flows using k - ε model and ADBQUICKEST scheme. Journal of the Brazilian Society of Mechanical Sciences and Engineering 40:202. https://doi.org/10.1007/s40430-018-1100-1 DOI: https://doi.org/10.1007/s40430-018-1100-1

Ozmen-Cagatay H, Kocaman S (2010) Dam-break flows during initial stage using SWE and RANS approaches. Journal of Hydraulic Research 48(5):603-611. https://doi.org/10.1080/00221686.2010.507342 DOI: https://doi.org/10.1080/00221686.2010.507342

Quecedo M, Pastor M, Herreros MI, Merodo JAF, Zhang Q (2005) Comparison of two mathematical models for solving the dam break problem using the FEM method. Computer Methods in Applied Mechanics and Engineering 194:3984–4005. https://doi.org/10.1016/j.cma.2004.09.011 DOI: https://doi.org/10.1016/j.cma.2004.09.011

Jones WP, Launder BE (1972) The prediction of laminarization with a two-equation model of turbulence. Int J Heat Mass Transf 15(2):301-314. https://doi.org/10.1016/0017-9310(72)90076-2 DOI: https://doi.org/10.1016/0017-9310(72)90076-2

Mazarbhuiya HMSM, Biswas A, Sharma KK (2020) Low wind speed aerodynamics of asymmetric blade H‑Darrieus wind turbine‑its desired blade pitch for performance improvement in the built environment. Journal of the Brazilian Society of Mechanical Sciences and Engineering 42:326. https://doi.org/10.1007/s40430-020-02408-0 DOI: https://doi.org/10.1007/s40430-020-02408-0

Menter FR, Kuntz M, Langtry R (2003) Ten Years of Industrial Experience with the SST Turbulence Model. Turbulence, Heat and Mass Transfer 4:625-632.

Khavaran A, Krejsa EA (1999) Role of anisotropy in turbulent mixing noise. AIAA Journal 37(7):832–841. https://doi.org/10.2514/2.7531 DOI: https://doi.org/10.2514/2.7531

Sacomano Filho FL, Fukumasu NK, Krieger GC (2013) Numerical simulation of an ethanol turbulent spray flame with RANS and diffusion combustion model. Journal of the Brazilian Society of Mechanical Sciences and Engineering 35:189-198. https://doi.org/10.1007/s40430-013-0029-7 DOI: https://doi.org/10.1007/s40430-013-0029-7

dos Santos ED, Isoldi LA, Petry AP, França FHR (2014) A numerical study of combined convective and radiative heat transfer in non-reactive turbulent channel flows with several optical thicknesses: a comparison between LES and RANS. Journal of the Brazilian Society of Mechanical Sciences and Engineering 36:207-219. https://doi.org/10.1007/s40430-013-0075-1 DOI: https://doi.org/10.1007/s40430-013-0075-1

Yahiaoui T, Ladjedel O, Imine O, Adjlout L (2016) Experimental and CFD investigations of turbulent cross‑flow in staggered tube bundle equipped with grooved cylinders. Journal of the Brazilian Society of Mechanical Sciences and Engineering 38:163-175. https://doi.org/10.1007/s40430-015-0450-1 DOI: https://doi.org/10.1007/s40430-015-0450-1

Rosa V, Deschamps CJ, Salazar JPLC, Ilário CRS (2017) Comparison of RANS‑based jet noise models and assessment of a ray tracing method. Journal of the Brazilian Society of Mechanical Sciences and Engineering 39:1859-1872. https://doi.org/10.1007/s40430-017-0746-4 DOI: https://doi.org/10.1007/s40430-017-0746-4

Coimbra APN, da Silva LFF (2020) Modelling of a turbulent lean premixed combustor using a Reynolds‑averaged Navier–Stokes approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering 42:213. https://doi.org/10.1007/s40430-020-2273-y DOI: https://doi.org/10.1007/s40430-020-2273-y

Abdalrahman G, Melek W, Lien FS (2017) Pitch angle control for a small-scale Darrieus vertical axis wind turbine with straight blades (H-Type VAWT). Renewable Energy 114:1353-1362. https://doi.org/10.1016/ DOI: https://doi.org/10.1016/j.renene.2017.07.068

j.renene.2017.07.068 DOI: https://doi.org/10.1055/s-0037-1608954

Kassem HI, Saqr KM, Aly HS, Sies MM, Wahid MA (2011) Implementation of the eddy dissipation model of turbulent non-premixed combustion in OpenFOAM. International Communications in Heat and Mass Transfer 38(3):363-367. https://doi.org/10.1016/j.icheatmasstransfer.2010.12.012 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2010.12.012

Gjesing R, Hattel J, Fritsching U (2009) Coupled atomization and spray modelling in the spray forming process using OpenFOAM. Engineering Applications of Computational Fluid Mechanics 3(4):471-486. https://doi.org/10.1080/ DOI: https://doi.org/10.1080/19942060.2009.11015284

2009.11015284

Yousefifard M, Ghadimi P, Mirsalim M (2015) Numerical simulation of biodiesel spray under ultra-high injection pressure using OpenFOAM. Journal of the Brazilian Society of Mechanical Sciences and Engineering 37:737-746. https://doi.org/10.1007/s40430-014-0199-y DOI: https://doi.org/10.1007/s40430-014-0199-y

Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering 3(2):269-289 (1974). https://doi.org/10.1016/0045-7825(74)90029-2 DOI: https://doi.org/10.1016/0045-7825(74)90029-2

Wilcox DC (1988) Reassessment of the Scale-Determining Equation for Advanced Turbulence Models. The American Institute of Aeronautics and Astronautics Journal 26(11):1299-1310. https://doi.org/10.2514/3.10041 DOI: https://doi.org/10.2514/3.10041

Menter FR (1994) Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. The American Institute of Aeronautics and Astronautics Journal 32(8):1598-1605. https://doi.org/10.2514/3.12149 DOI: https://doi.org/10.2514/3.12149

Lam CKG, Bremhorst K (1981) A modified form of the k-ε model for predicting wall turbulence. Journal of Fluids Engineering 103(3):456-460. https://doi.org/10.1115/1.3240815 DOI: https://doi.org/10.1115/1.3240815

Lien FS, Leschziner MA (1993) A Pressure-Velocity Solution Strategy for Compressible Flow and Its Application to Shock/Boundary-Layer Interaction Using Second-Moment Turbulence Closure. Journal of Fluids Engineering 115(4):717-725. https://doi.org/10.1115/1.2910204 DOI: https://doi.org/10.1115/1.2910204

Spalart PR, Allmaras SR (1992) A one-equation turbulence model for aerodynamic flows. The American Institute of Aeronautics and Astronautics Paper 92-0439. https://doi.org/10.2514/6.1992-439 DOI: https://doi.org/10.2514/6.1992-439

Yakhot V, Orszag SA, Thangam S, Gatski TB, Speziale CG (1992) Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A: Fluid Dynamics 4(7):1510-1520. https://doi.org/ DOI: https://doi.org/10.1063/1.858424

1063/1.858424

Launder BE, Sharma BI (1974) Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer 1(2):131-138 (1974). https://doi.org/10.1016/0094-4548(74)90150-7 DOI: https://doi.org/10.1016/0094-4548(74)90150-7

Patankar SV (1980) Numerical Heat Transfer and Fluid Flow. Taylor & Francis, Boca Raton.

Greenshields C (2018) OpenFOAM v6 User Guide: 2.1 Lid-driven cavity flow. CFD Direct: The Architects of OpenFOAM. https://cfd.direct/openfoam/user-guide/v6-cavity/. Accessed 09 February 2019.

Pitz RW, Daily JW (1981) Experimental study of combustion in a turbulent free shear layer formed at a rearward facing step. American Institute of Aeronautics and Astronautics Journal. https://doi.org/10.2514/6.1981-106 DOI: https://doi.org/10.2514/6.1981-106

Abbott IH, Doenhoff AEV (1959) Theory of Wing Sections, Including a Summary of Airfoil Data. Dover publications, New York.

Anderson Jr. JD (2011) Fundamentals of Aerodynamics. Tata McGraw-Hill Education, New York.

Ahmed SR, Ramm G, Faltin G (1984) Some salient features of the time-averaged ground vehicle wake. SAE Technical Paper Series, No. 840300. https://doi.org/10.4271/840300 DOI: https://doi.org/10.4271/840300

Ghia UKNG, Ghia KN, Shin CT (1982) High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics 48(3):387-411. https://doi.org/10.1016/0021-9991(82)90058-4 DOI: https://doi.org/10.1016/0021-9991(82)90058-4

Garg VK (1998) Applied Computational Fluid Dynamics. CRC Press, Boca Raton. DOI: https://doi.org/10.1201/9781482270006

Leschziner M (2015) Statistical turbulence modelling for fluid dynamics-demystified: an introductory text for graduate engineering students. World Scientific, London. DOI: https://doi.org/10.1142/p997

UIUC Airfoil Data Site. UIUC Applied Aerodynamics Group. https://m-selig.ae.illinois.edu/ads.html. Accessed 13 february 2019.

NACA 0018 - NACA 0018 airfoil. Airfoil Tools. http://www.airfoiltools.com/airfoil/details?airfoil=naca0018-il. Accessed 09 February 2019.

Betts PL, Bokhari IH (2000) Experiments on turbulent natural convection in an enclosed tall cavity. International Journal of Heat and Fluid Flow 21:675-683. DOI: https://doi.org/10.1016/S0142-727X(00)00033-3

Incropera FP, Dewitt DP (2008) Fundamentos de Transferência de Calor e de Massa. LTC editora, Rio de Janeiro.

Descargas

Publicado

2021-11-20

Cómo citar

Rocha, P., Pinto Marinho, F., Oliveira Santos, V., Praxedes Mendonça, S., & Vieira da Silva, M. E. (2021). LOS MODELOS DE TURBULENCIA APLICARON LA MECÁNICA DE FLUIDOS CLÁSICA Y LOS PROBLEMAS DE TRANSFERENCIA DE CALOR - LA EVALUACIÓN DE RENDIMIENTO DEL PAQUETE OPENFOAM OPENFOAM OPENSOURCE DFC. REVISTA CIENTÍFICA ACERTTE, 1(5), e1539. https://doi.org/10.47820/acertte.v1i5.39

Artículos similares

1 2 3 > >> 

También puede {advancedSearchLink} para este artículo.

Artículos más leídos del mismo autor/a