TURBULENCE MODELS APPLIED TO CLASSICAL FLUID MECHANICS AND HEAT TRANSFER PROBLEMS - THE PERFORMANCE EVALUATION OF THE OPEN SOURCE CFD PACKAGE OPENFOAM

Authors

DOI:

https://doi.org/10.47820/acertte.v1i5.39

Keywords:

Turbulence modeling, RANS, computational fluid dynamics (CFD), heat transfer, finite volume method, OpenFOAM

Abstract

Topics related to the modeling of turbulent flow feature significant relevance in several areas, especially in engineering, since the vast majority of flows present in the design of devices and systems are characterized to be turbulent. A vastly applied tool for the analysis of such flows is the use of numerical simulations based on turbulence models. Thus, this work aims to evaluate the performance of several turbulence models when applied to classic problems of fluid mechanics and heat transfer, already extensively validated by empirical procedures. The OpenFOAM open source software was used, being highly suitable for obtaining numerical solutions to problems of fluid mechanics involving complex geometries. The problems for the evaluation of turbulence models selected were: two-dimensional cavity, Pitz-Daily, air flow over an airfoil, air flow over the Ahmed blunt body and the problem of natural convection between parallel plates. The solution to such problems was achieved by utilizing several Reynolds Averaged  Equations (RANS) turbulence models, namely: k-ε, k-ω, Lam-Bremhorst k-ε, k-ω SST, Lien-Leschziner k-ε, Spalart-Allmaras, Launder-Sharma k-ε, renormalization group (RNG) k-ε. The results obtained were compared to those found in the literature which were empirically obtained, thus allowing the assessment of the strengths and weaknesses of the turbulence modeling applied in each problem.

Downloads

Download data is not yet available.

Author Biographies

Paulo Rocha, Universidade Federal do Ceará

Universidade Federal do Ceará

Felipe Pinto Marinho, Universidade Federal do Ceará

Engenheiro Mecânico, Mestre em Engenharia Mecânica, Doutorando em Engenharia de Teleinformática.

Victor Oliveira Santos, Universidade Federal do Ceará

Engenheiro Mecânico, Mestrando em Engenharia Mecânica.

Stéphano Praxedes Mendonça, Universidade Federal do Ceará

Engenheiro de Energias Renováveis e Mestre em Engenharia Mecânica pela Universidade Federal do Ceará.

Maria Eugênia Vieira da Silva, Universidade Federal do Ceará

Graduação em Engenharia Mecânica, Mestrado em Engenharia Mecânica, Doutorado em Engenharia Civil e pós-doutorado em Energia Heliotérmica. É Professora Titular da Universidade Federal do Ceará.

References

Rocha PAC, Silveira JVP (2012) Estudo e aplicação de simulação computacional em problemas simples de mecânica dos fluidos e transferência de calor. Revista Brasileira de ensino de Física 34(3):4306. https://doi.org/ DOI: https://doi.org/10.1590/S1806-11172012000400006

1590/S1806-11172012000400006

Wehmman CF, Rocha PAC, da Silva MEV, Araújo FAA, Correia DL (2017) Estudo e aplicação de simulação computacional em problemas simples de mecânica dos fluidos e transferência de calor – Parte II: Problemas clássicos de transmissão de calor, Revista Brasileira de Ensino de Física 40(2): 2313. http://dx.doi.org/10.1590/1806-9126-rbef-2017-0221 DOI: https://doi.org/10.1590/1806-9126-rbef-2017-0221

Versteeg HK, Malalasekera W (2007) An Introduction to Computational Fluid Dynamics – The Finite Volume Method. Pearson, London.

Kurokawa FA, Corrêa L, de Queiroz RAB (2018) Numerical simulation of 3D unsteady turbulent free surface flows using k - ε model and ADBQUICKEST scheme. Journal of the Brazilian Society of Mechanical Sciences and Engineering 40:202. https://doi.org/10.1007/s40430-018-1100-1 DOI: https://doi.org/10.1007/s40430-018-1100-1

Ozmen-Cagatay H, Kocaman S (2010) Dam-break flows during initial stage using SWE and RANS approaches. Journal of Hydraulic Research 48(5):603-611. https://doi.org/10.1080/00221686.2010.507342 DOI: https://doi.org/10.1080/00221686.2010.507342

Quecedo M, Pastor M, Herreros MI, Merodo JAF, Zhang Q (2005) Comparison of two mathematical models for solving the dam break problem using the FEM method. Computer Methods in Applied Mechanics and Engineering 194:3984–4005. https://doi.org/10.1016/j.cma.2004.09.011 DOI: https://doi.org/10.1016/j.cma.2004.09.011

Jones WP, Launder BE (1972) The prediction of laminarization with a two-equation model of turbulence. Int J Heat Mass Transf 15(2):301-314. https://doi.org/10.1016/0017-9310(72)90076-2 DOI: https://doi.org/10.1016/0017-9310(72)90076-2

Mazarbhuiya HMSM, Biswas A, Sharma KK (2020) Low wind speed aerodynamics of asymmetric blade H‑Darrieus wind turbine‑its desired blade pitch for performance improvement in the built environment. Journal of the Brazilian Society of Mechanical Sciences and Engineering 42:326. https://doi.org/10.1007/s40430-020-02408-0 DOI: https://doi.org/10.1007/s40430-020-02408-0

Menter FR, Kuntz M, Langtry R (2003) Ten Years of Industrial Experience with the SST Turbulence Model. Turbulence, Heat and Mass Transfer 4:625-632.

Khavaran A, Krejsa EA (1999) Role of anisotropy in turbulent mixing noise. AIAA Journal 37(7):832–841. https://doi.org/10.2514/2.7531 DOI: https://doi.org/10.2514/2.7531

Sacomano Filho FL, Fukumasu NK, Krieger GC (2013) Numerical simulation of an ethanol turbulent spray flame with RANS and diffusion combustion model. Journal of the Brazilian Society of Mechanical Sciences and Engineering 35:189-198. https://doi.org/10.1007/s40430-013-0029-7 DOI: https://doi.org/10.1007/s40430-013-0029-7

dos Santos ED, Isoldi LA, Petry AP, França FHR (2014) A numerical study of combined convective and radiative heat transfer in non-reactive turbulent channel flows with several optical thicknesses: a comparison between LES and RANS. Journal of the Brazilian Society of Mechanical Sciences and Engineering 36:207-219. https://doi.org/10.1007/s40430-013-0075-1 DOI: https://doi.org/10.1007/s40430-013-0075-1

Yahiaoui T, Ladjedel O, Imine O, Adjlout L (2016) Experimental and CFD investigations of turbulent cross‑flow in staggered tube bundle equipped with grooved cylinders. Journal of the Brazilian Society of Mechanical Sciences and Engineering 38:163-175. https://doi.org/10.1007/s40430-015-0450-1 DOI: https://doi.org/10.1007/s40430-015-0450-1

Rosa V, Deschamps CJ, Salazar JPLC, Ilário CRS (2017) Comparison of RANS‑based jet noise models and assessment of a ray tracing method. Journal of the Brazilian Society of Mechanical Sciences and Engineering 39:1859-1872. https://doi.org/10.1007/s40430-017-0746-4 DOI: https://doi.org/10.1007/s40430-017-0746-4

Coimbra APN, da Silva LFF (2020) Modelling of a turbulent lean premixed combustor using a Reynolds‑averaged Navier–Stokes approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering 42:213. https://doi.org/10.1007/s40430-020-2273-y DOI: https://doi.org/10.1007/s40430-020-2273-y

Abdalrahman G, Melek W, Lien FS (2017) Pitch angle control for a small-scale Darrieus vertical axis wind turbine with straight blades (H-Type VAWT). Renewable Energy 114:1353-1362. https://doi.org/10.1016/ DOI: https://doi.org/10.1016/j.renene.2017.07.068

j.renene.2017.07.068 DOI: https://doi.org/10.1055/s-0037-1608954

Kassem HI, Saqr KM, Aly HS, Sies MM, Wahid MA (2011) Implementation of the eddy dissipation model of turbulent non-premixed combustion in OpenFOAM. International Communications in Heat and Mass Transfer 38(3):363-367. https://doi.org/10.1016/j.icheatmasstransfer.2010.12.012 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2010.12.012

Gjesing R, Hattel J, Fritsching U (2009) Coupled atomization and spray modelling in the spray forming process using OpenFOAM. Engineering Applications of Computational Fluid Mechanics 3(4):471-486. https://doi.org/10.1080/ DOI: https://doi.org/10.1080/19942060.2009.11015284

2009.11015284

Yousefifard M, Ghadimi P, Mirsalim M (2015) Numerical simulation of biodiesel spray under ultra-high injection pressure using OpenFOAM. Journal of the Brazilian Society of Mechanical Sciences and Engineering 37:737-746. https://doi.org/10.1007/s40430-014-0199-y DOI: https://doi.org/10.1007/s40430-014-0199-y

Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering 3(2):269-289 (1974). https://doi.org/10.1016/0045-7825(74)90029-2 DOI: https://doi.org/10.1016/0045-7825(74)90029-2

Wilcox DC (1988) Reassessment of the Scale-Determining Equation for Advanced Turbulence Models. The American Institute of Aeronautics and Astronautics Journal 26(11):1299-1310. https://doi.org/10.2514/3.10041 DOI: https://doi.org/10.2514/3.10041

Menter FR (1994) Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. The American Institute of Aeronautics and Astronautics Journal 32(8):1598-1605. https://doi.org/10.2514/3.12149 DOI: https://doi.org/10.2514/3.12149

Lam CKG, Bremhorst K (1981) A modified form of the k-ε model for predicting wall turbulence. Journal of Fluids Engineering 103(3):456-460. https://doi.org/10.1115/1.3240815 DOI: https://doi.org/10.1115/1.3240815

Lien FS, Leschziner MA (1993) A Pressure-Velocity Solution Strategy for Compressible Flow and Its Application to Shock/Boundary-Layer Interaction Using Second-Moment Turbulence Closure. Journal of Fluids Engineering 115(4):717-725. https://doi.org/10.1115/1.2910204 DOI: https://doi.org/10.1115/1.2910204

Spalart PR, Allmaras SR (1992) A one-equation turbulence model for aerodynamic flows. The American Institute of Aeronautics and Astronautics Paper 92-0439. https://doi.org/10.2514/6.1992-439 DOI: https://doi.org/10.2514/6.1992-439

Yakhot V, Orszag SA, Thangam S, Gatski TB, Speziale CG (1992) Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A: Fluid Dynamics 4(7):1510-1520. https://doi.org/ DOI: https://doi.org/10.1063/1.858424

1063/1.858424

Launder BE, Sharma BI (1974) Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer 1(2):131-138 (1974). https://doi.org/10.1016/0094-4548(74)90150-7 DOI: https://doi.org/10.1016/0094-4548(74)90150-7

Patankar SV (1980) Numerical Heat Transfer and Fluid Flow. Taylor & Francis, Boca Raton.

Greenshields C (2018) OpenFOAM v6 User Guide: 2.1 Lid-driven cavity flow. CFD Direct: The Architects of OpenFOAM. https://cfd.direct/openfoam/user-guide/v6-cavity/. Accessed 09 February 2019.

Pitz RW, Daily JW (1981) Experimental study of combustion in a turbulent free shear layer formed at a rearward facing step. American Institute of Aeronautics and Astronautics Journal. https://doi.org/10.2514/6.1981-106 DOI: https://doi.org/10.2514/6.1981-106

Abbott IH, Doenhoff AEV (1959) Theory of Wing Sections, Including a Summary of Airfoil Data. Dover publications, New York.

Anderson Jr. JD (2011) Fundamentals of Aerodynamics. Tata McGraw-Hill Education, New York.

Ahmed SR, Ramm G, Faltin G (1984) Some salient features of the time-averaged ground vehicle wake. SAE Technical Paper Series, No. 840300. https://doi.org/10.4271/840300 DOI: https://doi.org/10.4271/840300

Ghia UKNG, Ghia KN, Shin CT (1982) High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics 48(3):387-411. https://doi.org/10.1016/0021-9991(82)90058-4 DOI: https://doi.org/10.1016/0021-9991(82)90058-4

Garg VK (1998) Applied Computational Fluid Dynamics. CRC Press, Boca Raton. DOI: https://doi.org/10.1201/9781482270006

Leschziner M (2015) Statistical turbulence modelling for fluid dynamics-demystified: an introductory text for graduate engineering students. World Scientific, London. DOI: https://doi.org/10.1142/p997

UIUC Airfoil Data Site. UIUC Applied Aerodynamics Group. https://m-selig.ae.illinois.edu/ads.html. Accessed 13 february 2019.

NACA 0018 - NACA 0018 airfoil. Airfoil Tools. http://www.airfoiltools.com/airfoil/details?airfoil=naca0018-il. Accessed 09 February 2019.

Betts PL, Bokhari IH (2000) Experiments on turbulent natural convection in an enclosed tall cavity. International Journal of Heat and Fluid Flow 21:675-683. DOI: https://doi.org/10.1016/S0142-727X(00)00033-3

Incropera FP, Dewitt DP (2008) Fundamentos de Transferência de Calor e de Massa. LTC editora, Rio de Janeiro.

Downloads

Published

2021-11-20

How to Cite

Rocha, P., Pinto Marinho, F., Oliveira Santos, V., Praxedes Mendonça, S., & Vieira da Silva, M. E. (2021). TURBULENCE MODELS APPLIED TO CLASSICAL FLUID MECHANICS AND HEAT TRANSFER PROBLEMS - THE PERFORMANCE EVALUATION OF THE OPEN SOURCE CFD PACKAGE OPENFOAM. ACERTTE SCIENTIFIC JOURNAL, 1(5), e1539. https://doi.org/10.47820/acertte.v1i5.39