CREDIT CARD FRAUD AND TRANSACTION COSTS: THE ROLE OF MACHINE LEARNING IN ECONOMIC EFFICIENCY

Authors

  • Vinícius Dias Oliveira Federal University of Sao Paulo

DOI:

https://doi.org/10.63026/acertte.v5i11.275

Keywords:

Financial fraud. Transaction costs. Machine learning. Economic efficiency. Governance.

Abstract

Credit card fraud represents one of the main economic challenges of the contemporary financial system, affecting efficiency, trust, and institutional governance. This study analyzes the economic impact of fraud from the perspective of Transaction Cost Theory, examining how machine learning can serve as a tool for enhancing efficiency and promoting institutional innovation. Based on public financial transaction data and theoretical review, the paper interprets the use of machine learning algorithms as a mechanism for rationalizing monitoring and verification costs, thus reducing losses and improving productivity. The results show that models such as Logistic Regression, Support Vector Machines, and Decision Trees have strong potential to detect anomalous patterns, decrease audit costs, and enhance confidence in the financial system. It is concluded that machine learning represents a Schumpeterian innovation capable of reducing transaction costs and increasing economic efficiency, establishing itself as a strategic element for the modernization and security of financial institutions in Brazil.

Downloads

Download data is not yet available.

Author Biography

Vinícius Dias Oliveira, Federal University of Sao Paulo

Graduated in Economic Sciences from the Escola Paulista de Política, Economia e Negócios, Federal University of São Paulo.

References

BANCO CENTRAL DO BRASIL. Relatório de Economia Bancária e Crédito 2023. Brasília, 2023.

CNDL – CONFEDERAÇÃO NACIONAL DE DIRIGENTES LOJISTAS. Relatório Nacional de Fraudes Financeiras. Brasília, 2024.

COASE, R. The Nature of the Firm. Economica, v. 4, n. 16, p. 386–405, 1937. DOI: https://doi.org/10.1111/j.1468-0335.1937.tb00002.x

FEBRABAN – FEDERAÇÃO BRASILEIRA DE BANCOS. Relatório FEBRABAN de Tecnologia Bancária 2023. São Paulo, 2023.

GÉRON, A. Mãos à Obra: Aprendizado de Máquina com Scikit-Learn, Keras e TensorFlow. 2. ed. Rio de Janeiro: Alta Books, 2019.

NELSON, R.; WINTER, S. An Evolutionary Theory of Economic Change. Cambridge: Harvard University Press, 1982.

OLIVEIRA, Vinicius Dias. Métodos de Machine Learning na Detecção de Fraude em Cartão de Crédito: um Estudo Comparado. Revista Científica Acertte, v. 5, n. 9, p. e59265, 2025. DOI: 10.63026/acertte.v5i9.265. DOI: https://doi.org/10.63026/acertte.v5i9.265

POSSAS, M. Concorrência e Dinâmica Capitalista: Uma Abordagem Schumpeteriana. São Paulo: Hucitec, 2006.

SCHUMPETER, J. Capitalismo, Socialismo e Democracia. Rio de Janeiro: Fundo de Cultura, 1942.

SERASA EXPERIAN. Panorama da Fraude no Brasil 2024. São Paulo, 2024.

WILLIAMSON, O. The Economic Institutions of Capitalism. New York: Free Press, 1985.

WILLIAMSON, O. Mechanisms of Governance. New York: Oxford University Press, 1996. DOI: https://doi.org/10.1093/oso/9780195078244.001.0001

Published

2025-11-13

How to Cite

Oliveira, V. D. (2025). CREDIT CARD FRAUD AND TRANSACTION COSTS: THE ROLE OF MACHINE LEARNING IN ECONOMIC EFFICIENCY. ACERTTE SCIENTIFIC JOURNAL, 5(11), e511275. https://doi.org/10.63026/acertte.v5i11.275